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Abstract 

The military professional is a practically-minded individual.  This is not, stereotypes 

aside, the result of an inflexible, unimaginative nature, but comes from pursuing a 

profession that emphasizes mission accomplishment above all else. What sane nation 

would want less of its protectors? 

This paper is written with such a practical mindset, and begins with a definition of the 

most pertinent aspects of Chaos Theory for military applications. This is kept at a 

conceptual level for the benefit of the novice looking to understand the ‘big picture’ 

before pursuing the topic further, and for those individuals who do not need to work at a 

more mathematical level. Examples of Chaotic systems of military interest are given. 

This work also addresses some of the difficulties in applying this mathematical theory 

metaphorically, and to social situations.  For, although it is still being developed, Chaos 

Theory is being exploited by military strategists, economists, polit ical analysts, and others 

with results that range from pragmatic and useful, to fanciful nonsense.  The military 

professional could benefit from understanding some of the pitfalls of potential 

misapplication of Chaos Theory. 

Last, this paper provides an open-ended discussion of how to apply Chaos Theory, by 

stepping the reader through the process of evaluating a system that is not strictly physical, 

for the potential applicability of Chaos Theory. 
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Chapter 1 

Chaos With a Capital ‘C’ 

And now for something completely different. 

—John Cleese 
Monty Python’s Flying Circus 

Everyone knows what ‘chaos’ is.  It’s a department store on Christmas Eve, a 

birthday party for two-year-olds where someone lets a puppy loose, and the state your 

files are in when the boss announces an I.G. inspection is coming in six weeks. It is, 

according to the dictionary, disorder and confusion.  But people often interpret that to 

mean chaos is also random, unpredictable, and uncontrollable.  For systems involving 

human behavior as a driving force like those above, this is not a bad approximation.  But 

in the case of real,  physical systems that are chaotic, that assumption is wrong.  Chaos in 

physical systems simply means disorder—wild fluctuations in output—arising from non-

random causes.  At first, this might seem like a trivial matter of semantics used by 

persnickety math geeks to ‘talk down’ to the public.  It is not.  The difference is significant 

because it concerns matters of predictabilit y and control: very important issues in a 

mission-oriented profession like the military.  In fact, one of the military’s most erudite 

Chaologists, Glenn James, in his excellent tutorial Chaos: The Essentials for Milit ary 

Applications, specifically defines Chaos with a capital ‘C,’  in order to highlight the 
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difference between true mathematical Chaos that occurs in real, physical systems, and the 

more vernacular, ‘societal’ confusion.1  We’ll follow his lead. 

Further, since this paper is aimed primarily at the military professionals—active duty 

and civilians—who don’t need to get into the mathematical ‘weeds’ to get their job done, 

yet needs to understand the effects of Chaos, we’ll keep the level conceptual and as non-

mathematical as practical. 

While we will develop definitions throughout this paper, key concepts that are crit ical 

to understanding why Chaos Theory is relevant to the military are: 

1.	 Chaos is not randomness and it does not arise from the same stochastic forces that 
cause random behavior; 

2.	 Instead, Chaos arises from the same completely knowable conditions that give rise 
to ordered, thoroughly predictable behavior, despite the disorder of Chaos itself; 

3.	As a result, Chaotic systems can often be mistaken for random systems, and the 
potential for well-behaved systems to become Chaotic is often not realized; 

4.	There is an underlying structure to Chaotic systems that sometimes allow us to 
make predictions about its long-term trend, and very short-term behavior; 

5.	Some Chaotic systems can be driven in or out of Chaos; that is, Chaos can 
occasionally be controlled. 

These are bold assertions, that may even seem counter-intuitive at first.  But they are 

important for three reasons.  First, because there are countless, real, physical systems upon 

which military lives and missions depend that are Chaotic.  We will lo ok at examples 

shortly. Second, since random systems can’t be controlled and are unpredictable, when 

we mistake Chaotic behavior for random behavior we risk losing even the limit ed abilit y to 

make predictions of the system.  This is tantamount to abdicating control. Third, when we 

don’t recognize the potential in well-behaved systems to deteriorate suddenly into Chaotic 

behavior, we also risk losing control. 
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But, what kind of military systems are Chaotic, or could become Chaotic? 

Turbulence, for example, is Chaotic. Anything affected by turbulence, like aircraft wings, 

paratroopers making a jump, water lines, lasers propagating through the atmosphere, or 

imaging to and from space, and so on, are subject to Chaotic forces. The weather is a 

Chaotic system, and anyone who flies, sails, or treks across deserts and through forests is 

affected by that.  Transient effects like wind gusts or waves can cause a system to go 

Chaotic; this can, and has, resulted in capsizing of ships thought to be stable to these 

influences. Electrical circuits can be driven in and out of Chaos, as many of our 

communications specialists already know.  Many systems of the human body are known to 

be, or suspected of being Chaotic, like brain activity and the rhythm of the beating heart. 

And as more is becoming known about Chaos, a myriad of applications important to the 

milit ary are sprouting up.  Data compression, important for satellit e links, might be 

accomplished by applying Chaotic analysis to transmission techniques.  New ways of 

making and breaking codes are being worked on. Imagine, if you will, our enemies having 

the abilit y to transmit code that is mistaken by us for random noise!  That kind of 

vulnerabilit y we just can’ t afford.  In short, Chaos can show up in places where one might 

least suspect.  This has the potential to cost lives, risk missions, and give our enemies an 

operational advantage. Clearly, Chaos is a subject worth investigating. 

On the other hand turbulence, weather, and other such systems have been around 

forever, and the world has not imploded because these systems weren’t recognized as 

Chaotic.  Why the hullabaloo now?  Partly because the mathematical aspects of Chaos 

have only been recognized in the last few decades. Previously, order and randomness 

were seen as the only two world-views available.  If something behaved in a disordered 
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fashion, it was assumed that either random forces were at hand, or not everything was 

known about the system.  But Chaos is a fundamentally different way of viewing reality; it 

is a type of behavior that has characteristics in common with both order and randomness, 

but is not either.  This realization, however, didn’ t come about until about 1960, with the 

ground-breaking work of meteorologist Edward Lorenz..  Thus, part of the reason Chaos 

Theory is only now becoming known, is that it is still being developed in a mathematical 

sense—and still has a long way to go. 

But the sudden interest in Chaos Theory is also due, in part, to the recent 

popularization of the subject by such authors as James Gleick in his enlightening book 

Chaos: Making a New Science.  (It can be argued that Gleick has done for Chaos Theory 

what Carl Sagan did for astronomy: educated and intrigued the masses in a way that no 

collection of pedantic equation-strewn monographs ever could.) This is good and bad. 

It’s good because it makes Chaos accessible to the vast, creative forces of collective 

human intelligence.  Who knows what can ultimately come of that?  It’s bad because 

Chaos Theory is a mathematical theory, and like most tools of ‘hard’ science doesn’t 

readily lend itself to ‘soft’ science application.  However, that hasn’t stopped economists, 

polit ical scientists, sociologists, anthropologists and the like from trying to apply the 

mathematical concepts of Chaos to ‘societal’  applications, often with results that range 

from practical and useful to fanciful nonsense.  This is important to the milit ary 

professional because Chaos Theory is becoming an increasingly popular topic in the fields 

of strategy, economics and polit ics.  The military strategist, in particular, is likely to see 

Chaos applied more frequently to military issues, both metaphorically—much in the same 

way Clausewitz applied Newtonian concepts like ‘centers of gravity’—and as an analysis 

4




tool of non-mathematical situations of warfare and conflict. The military professional 

could benefit  from understanding some of the pitfalls of potential misapplication of Chaos 

Theory.  Accordingly, this paper also discusses the risks in applying the ‘hard’ science tool 

of Chaos Theory to ‘soft’ science military issues. 

Last, this paper also presents a brief exercise in how to ‘think Chaotically’ , by walking 

the reader through the kinds of questions to ask when deciding if Chaos Theory can be 

applied to systems that are not strictly of the ‘engineering’ sort. 

But before stepping over the precipice into Chaos, so to speak, the author would like 

to emphasize that the scope of this work is quite narrow; it focuses on those aspects of 

Chaos which specifically deal with issues of predictabilit y.  For the reader interested in a 

fuller, more in-depth treatment of Chaos Theory, the author highly recommends the fine 

tutorial on Chaos theory by Glenn James, mentioned above.  Specifically written with the 

milit ary in mind, this tutorial is aimed at the average non-scientist and is very readable, as 

well as insightful. This work capitalizes heavily on James’ paper, as well as the works of 

Gleick and DuBlois, also recommend to the reader who wants to delve deeper into the 

‘something completely different’ of Chaos Theory.2 

Notes 

1 James, Glenn. Chaos Theory: The Essentials for Militar y Applications, Newport, 
R.I., Naval War College, 1995, 3. 

2 DeBlois, Bruce. Deterministic Philosophical Assumptions in the Application of 
Chaos Theory to Social Events, Maxwell AFB, School of Advanced Airpower Studies, 
not published and Gleick, James. Chaos: Making a New Science, New York, Penguin 
Books, 1988. 
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Chapter 2 

Piercing The ‘Fog’ Of Chaos 

…all action takes place, so to speak, in a kind of twilight, which, like fog 
or moonlight, often tends to make things seem grotesque and larger than 
they really are. 

—Clausewitz 

From the generalities presented so far, Chaos must certainly seem insidious: a state of 

disorder, masquerading as randomness, yet arising from conditions that—post-Newtonian 

common sense says—should yield complete predictabilit y.  But what does this mean? It 

seems to imply that Chaos is as nebulous and intractable as Clausewitz’s ‘fog of war.’ 1 

But any commander worth his or her rank knows that piercing the fog of war lies in 

sorting out what is, isn’ t, can, and simply can’t be known in battle; acting on what is 

knowable; and dealing with unavoidable unknowables.  In that vein, this chapter is 

intended to help the reader ‘pierce the fog of Chaos.’  By burning away the nebulous and 

erroneous notions most people have about Chaos Theory—in essence, seeing what is, 

isn’ t, can, and can’t be known about Chaos in physical system—the author hopes to help 

the reader learn to recognize Chaos in military systems, so as to control it when they can 

control it, and deal with it when they can’t. 

6




Birds, Bass, Beetles, and Buffalo 

To understand where Chaos comes from, let’s begin by looking at a well-behaved 

system that becomes Chaotic.  Such a system can be found in population biology: the 

study of the life and death cycles of birds, bass, beetles, and buffalo, to name a few. 

Biologists are very interested in predicting fluctuations in wildlife populations. This 

may seem like an enormously complex task, but in actualit y, one simple equation, called 

the logistics equation, approximates observed behavior with great accuracy.  (Milit ary 

professionals dealing with ecological issues such as base-closure clean-up, or biological 

issues such as biological warfare are probably already familiar with this equation.)  We 

won’t explore the equation itself in the main text; it’s explained more fully in Appendix A. 

At a conceptual level, the reader only needs to understand that the equation allows us to 

predict variation in population based on only two factors: 

1. the average number of offspring per adult (a constant), and 
2. the initial population. 

This is an iterative equation, meaning that having calculated one year’s population, 

that value is input back into the equation to predict the next year’s, and so on. A key 

aspect of the equation, however, is a feedback factor that depends only on the population 

value as it changes year to year. When the population becomes too big for the local 

ecosystem to support it, the feedback factor dampens the population.  When it is smaller, 

the feedback ‘encourages’ higher future populations.  What is most important about this 

feedback factor is that it introduces nonlinearity into the system. This nonlinearity is not 

so different from what people mean when they describe a hot-tempered individual as going 

‘nonlinear’ if anyone even mildly disagrees with him or her, meaning that person’s 
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response was out of proportion with the situation.  Similarly, by definition, nonlinearity in 

a system means that the output is not directly or inversely proportional to the input. 

Linear equations contain only addition, subtraction, multiplication or division by constants. 

Nonlinear operations involve exponents, trigonometric functions, and logarithms.  One of 

the fundamental truths about Chaos is all Chaotic systems are nonlinear, but not all 

nonlinear systems are Chaotic.  Further, as we’ll see later in this paper, linear systems are 

never Chaotic.  Many Chaotic systems become so because they are subject to this type of 

nonlinear feedback, which the system can’t ‘compensate’ for.  The result are wild 

fluctuations characteristic of Chaos.  We can see this in ‘watching’ our population biology 

example go from stable, to Chaotic. 

Consider how the population of bass changes as described by the logistics equation. 

Assume a near-zero population initially (near-extinction) and an average 2.0 offspring per 

adult. Figure 1 shows the results.  Notice that the population of bass rises to a constant 

2 value, year after year remaining the same. In this case, although nonlinear feedback exists 

in the system, its effects are negligible in cases of low birth rates (see Appendix A). An 

individual running a ‘farm-pond’ would be happy with these results. 
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Figure 1. Steady State Solution of Logistics Equation: � = 2.0 

But something curious happens when the number of offspring increases to more than 

3 per adult. Figure 2 shows the case of  an average of 3.4 offspring.  Here, the population 

attains a periodic pattern; steady high one year, low the next, and so on.  What’s 

happening is that the population rises so quickly that it init ially overshoots a stable 

solution, then feedback causes a depletion in the next year.  But the feedback encourages 

too much depletion, so the system again compensates, causing another boom and so on 

and so on.  Such a sudden change in the character of the output is known as a bifurcation, 

another term that frequently appears when defining Chaos (and one that many authors 

tend to misuse).  A bifurcation simply means a drastic change in the pattern, or the 

quantitative state of a system.  The type of bifurcation shown in Figure 2 is what is called 

period doubling, or period-2.  What’s very important to realize here is that the only 

difference between the steady state solution shown in Figure 1, and the period doubling 

that occurs in Figure 2, is that we’ve changed a constant, nothing else. That is, year after 
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year after year we assume the average bass can produce 3.4 offspring per adult. This 

increase in the constant, increases the effect the nonlinear feedback has on the system. 
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Figure 2. Period-2: � = 3.4 

Now if we have an even higher offspring rate (about 3.6 offspring per adult) the 

nonlinear feedback induces even more dynamical change.  The period doubles again to 

what is called period-4, as shown in Figure 3.  Notice that although we have fluctuating 

values, like in Figure 2, the fluctuations are steady, repeatable, completely predictable. 

Once we know what the first four years bring, and as long as we don’ t introduce 

something new into the system, we can predict the bass population forever!  This is not 

mathematical trickery, or naive model-making. Real populations behave this way. 
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Figure 3. Period-4: � = 3.5699 

What we’ve seen in the previous examples of bifurcation is simply the effects of quite 

manageable feedback. But as anyone who has ever set up their own audio system knows, 

feedback can become quite unmanageable.  When the feedback is too large, its nonlinear 

effects dominate the systems behavior. This is exactly what happens if we change the 

birthrate in the logistics equation to 4.0 (a mere 0.4 difference from our last example). 

The bass population begins to fluctuate wildly as shown in Figure 4. Suddenly we have 

Chaos! It is important to understand that these sudden wild fluctuations have arisen from 

the same completely known types of conditions that produced the steady state, and well-

behaved periodicity seen in the previous examples. Why this happened in this example is a 

matter of feedback. Feedback is a major factor in driving many systems into Chaos.  The 

nonlinearities which are manifest in feedback to the system, already exist and small 

changes in the physical conditions of a system can mean the difference between thoroughly 

characterizable systems and Chaotic systems. 
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Figure 4. Chaos "sets in": � = 4.0 

By the way, looking at Figure 4, we can see why Chaos is often mistaken for 

randomness; it certainly looks random doesn’t it? We’ll discuss more on that issue later. 

A New World View? 

The example above was first seen as contrary to the Newtonian physics ideal of 

determinism. Determinism means that the future of any system can be precisely known if 

enough is known about the constituents of the system and the conditions effecting it: that 

is, what the system contains, what forces are acting on the system and how those forces 

change with time.  Before Chaos Theory, scientists thought deterministic conditions 

always produced completely predictable behavior and that the only ‘options’  available to a 

system was: 

1. total predictability based on deterministic, characterizable, conditions, or 
2. disorder, based on random, stochastic processes. DeBlois neatly summarizes this 

Pre-Chaos World View as seen in Figure 5. 
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Behavior Response to Inputs Output 

Causal Deterministic Predictable 
(Order) 

Free will 

Non-deterministic  Unpredictable 
(Disorder) 

Random 

Figure 5. Pre-Chaos World View 

But the logistics equation shows that this isn’ t true. In the example above, all the 

inputs to the system—the average birth rate and initial population—were completely 

known. The results from that point on were simply a matter of iterating on these values. 

There were no random inputs!  We knew exactly what ‘went into’ the system, why 

couldn’ t we know exactly what ‘came out?’  Common sense would seem to dictate that 

the results should have been completely predictable.  Yet, four solutions to the exact same 

equation, starting from the exact same initial population, differing only by a constant, yield 

results that vary from steady state to Chaos.  This result is one of the most significant 

concerning Chaos. In fact, a second ‘truth’  of Chaos is that Chaos results from 

completely known, deterministic, conditions.  Chaos is not caused by random events and 

Chaotic systems do not behave randomly, as we shall see. 

Thus, we can argue that Chaos is a fundamentally new way of viewing reality as 

DeBlois, again, succinctly illustrates in Figure 6.  We no longer can say that realit y is 

either random or completely predictable.  Why this is important to the military 

professional—and why we can continue to label Chaos as insidious—is that Chaos 
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frequently ‘sets-in’ to systems that have only minor differences in the physical conditions, 

or parameters, from completely predictable systems. 

Behavior Response to Inputs Output 

(Order) Predictable 

Causal Deterministic 
Chaos 

(Apparent Disorder, Unpredictable 
or Underlying Disorder) 

Free will 

Non-deterministic 
(Disorder) 

Random 

Figure 6. Generalized Post-Chaos World View 

These parameters are constants throughout the evolution of the system (e.g., they 

3don’t change with time). These are often known as control parameters and they are 

good news for the military, or for anyone wanting to drive a system into Chaos, or prevent 

Chaos from occurring.  For example, in the bass population system, the control parameter 

was offspring per adult.  Modify that, and the system won’t become Chaotic, or can be 

‘pulled-back’ from Chaos.  However, knowing how to find these control parameters 

requires more background on the nature of how Chaotic systems behave, as will be 

explored in the next sections. 

Butterflies and Hurricanes 

Thus far we’ve developed two of the basic truths of Chaos: all Chaotic systems are 

nonlinear, and all Chaotic systems are deterministic.  A third basic truth that differentiates 

Chaotic systems from all other systems is that all Chaotic systems are sensitive to initial 
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conditions (SIC). To understand what this means, it helps to take a short time-trip 

backward to the initial ‘discovery’ of Chaos, as we shall now do. 

The development of Chaos Theory was largely serendipitous and mostly unexpected. 

It wasn’t that Chaos hadn’t been observed.  For centuries experimentalists and theorists 

alike knew of stable, periodic systems suddenly deteriorating into disordered, wildly 

fluctuating, behavior. But this was often blamed on poor data collection techniques, or 

incomplete knowledge of the system.  After all, since Newton, the catechism of non-

random physics was that of determinism, as we’ve discussed above. This world view got 

a severe upset when Edward Lorenz, a research meteorologist from the Massachusetts 

Institute of Technology, was attempting to computer-model weather. 

He was doing this in 1960, when computers were still masses of wiring and tubes, and 

even punch cards were a luxury.  Nonetheless, he was making good, if interminably slow 

progress, having reduced the basic forces that drive weather (pressure, temperature and 

wind speed) into relational equations.  His computerized weather behaved much as he 

expected, generating highs, lows, jet streams, and seasons.  But he noticed that a sort of 

“orderly disorder”4 cropped up in the results.  He was certainly seeing long-term trends— 

days got warmer in summer, cooler in winter, gradations in temperature signaled storms— 

all just as expected.  Yet, within those general trends, the actual pattern was never quite 

the same; the day to day weather predictions differed greatly, even when his initial starting 

points (initial conditions) seemed almost exactly the same. Puzzled, Lorenz investigated 

the patterns more closely.  One day, he made the fateful decision to study one particular 

“run” in more detail. Rather than starting the program from the beginning—a tedious task 

in the face of the unsophisticated computers of the time—he started from the middle, 
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inputting the intermediate values from a previous run he had in hand.  To his great surprise 

even though he was inputting the exact values as they read on the printout, he saw that the 

pattern that resulted from this run was markedly different from the previous one. 

Eventually, he realized that the intermediate values he had input from the printout had 

been truncated, but only by a very small amount.  Yet, what a large difference this made! 

Although his new ‘run’  and the old ‘run’  displayed patterns that had same relative degree 

of complexity and the same overall “trend,”  (i.e., the ‘high’  and ‘lows’ were of the same 

order) they were undoubtedly, and very unexpectedly, vastly different. What Edward 

Lorenz had inadvertently stumbled onto was the phenomenon of sensitivity to initial 

conditions or SIC. Figure 7 shows an example of SIC. 

Here we see two solutions to the exact same equation.  If the solution shown with a 

lighter line looks familiar, that’s because it is the same as Figure 4, the Chaotic solution to 

the logistics equation.  The difference in the two solutions is only in the initial value of the 

population. In the light line the initial value of the population was 0.001.  In the dark line 

it was set to 0.000999, a difference of only one part in one million.  But look at the 

difference in patterns.  After only ten time steps, the two lines, which perfectly coincide in 

the early years, diverge rapidly.  By step 34, one equation is predicting a high while the 

other is predicting a low.  In short, the slightest variation during the time-evolution of the 

system result in vastly different outcomes. Once again, every Chaotic system is sensitive 

to initial conditions. This sensitivity is a hallmark of Chaos. 
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Figure 7. Sensitivity to Initial Conditions 

For the sake of completeness, it should be noted that this sensitivity to initial 

condition is often referred to as the ‘Butterfly Effect.’  This simplific ation of Chaos 

Theory is often misused. The popularized notion of the Butterfly Effect goes something 

like “if a butterfly flaps its wings in Philadelphia, it can cause a hurricane in Japan.” But 

this notion is wrong by one important word: ‘cause.’  The butterfly doesn’t cause the 

hurricane.  The system must already have enough energy in it to produce a hurricane.  The 

presence of the butterfly merely disturbs the already Chaotic system, which is extremely 

sensitive to the smallest of changes, effectively ‘sending the system’ off in a different 

direction than if the butterfly wasn’t there. This makes it impossible to predict if the 
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hurricane will occur, just like changing the initial population of bass in our logistics 

equations by one part in one millionth made it impossible to predict in which years the 

population would ‘boom’ and in which years it would ‘bust.’ 

This capricious nature of Chaotic systems seems to make the issue of prediction 

concerning Chaotic phenomenon seem hopeless.  But it isn’ t—completely—hopeless. 

Thus far, the basic truths we’ve discovered about Chaos lead us to the conclusion that 

despite the deterministic origins of Chaos, its nonlinear nature (often manifest in system 

feedback), and its sensitivity to initial conditions results in extremely dynamic, disorderly 

results.  Thus, it is a fourth major truth about Chaotic systems that they are unpredictable 

except in terms of long-term trends and occasionally in the very short term.  In the next 

sections we’ll see what is meant by these exceptions, learning under what circumstances 

we can make predictions about Chaotic systems, which lead us closer to controlling these 

systems. 

Other “Fashionable” Concepts 

In the highly entertaining—albeit highly fanciful movie—Jurassic Park, actor Jeff 

Goldblum plays a self-proclaimed Chaotician.  In discussing the viabilit y of the prehistoric 

theme park, Goldblum’s character tosses out the terms phase-space, strange attractors, 

and more, in such an off-handed manner that the park’s creator surmises Chaos Theory is 

just “a load of fashionable number crunching.” Such a response is completely reasonable. 

The terms phase-space and strange attractors certainly appear daunting to non-

mathematicians, causing many peoples eyes to glaze over with disinterest.  But these are 

not difficult notions at the conceptual level no matter how ‘high-faluting’—as the author’s 
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grandfather would say—they sound.  And they are necessary to understanding what Chaos 

is.  Thus, in this section we will examine the nature of phase-space, and then of attractors, 

in periodic systems.  Subsequently, we’ll extrapolate these concepts to define them in 

Chaotic and random systems.  This will allow us to use phase-space to reveal the hidden 

structure in Chaotic systems, hence allowing us to make limited predictions about Chaotic 

behavior. 

At the most basic level, phase-space is simply a way of graphically representing the 

way a system behaves.  Take for example a simple, frictionless pendulum.  This is a 

dynamical system; in other words a system that changes with time. One way to describe 

this system is to graph how the bob position changes from moment to moment.  Consider 

Figure 8. If we define the position of the pendulum as zero when the bob is hanging 

straight down, then left of center is negative, and right of center is positive. As time 

progresses, the bob swings to one side then the other.  Graphically this looks like a sine 

wave, as shown.  Most people are familiar with the sine wave as one form of periodic 

behavior, so there’s no surprise here. 

But a more complete way to describe the system is to examine how the time- and 

space-dependent properties, or variables, of the system evolve.  The variables gives us 

complete information about the condition, or state, of the pendulum at a point in time. 

Graphing the way the variables change with respect to each other is called representing the 

system in phase-space. In the case of the pendulum the variables are position and 

velocity.  Let’s now look at how to graph the evolution of these variables in phase-space. 

Consider Figure 9.5  In the upper left of the figure we show the pendulum at its left-most 

position (remember, left-of-center is negative).  Having traveled as ‘high’  as the energy in 
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the system allows, the bob ‘stops’; that is, its speed and velocity are zero.  At that instant 

in time, the state of the system can be completely defined as a point in phase-space, this 

point has negative position and zero velocity.  This point in phase-space is shown in the 

upper-right figure of Figure 9. 

TIME 
POSITION 

Figure 8. The Simple, Frictionless Pendulum 
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THE VELOCITY OF THE PENDULUM 
IS ZERO AS IT BEGINS ITS DECENT. 
WE DEFINE IT POSITION LEFT OF 
CENTER AS NEGATIVE. 

THE STATE OF THE PENDULUM IS 
DESCRIBED BY ITS POSITION AND 
VELOCITY.  AS THE PENDULUM 
SWINGS RIGHT, ITS STATE EVOLVES 
ALONG A TRAJECTORY THAT TRACES 
OUT A PATH IN PHASE-SPACE. 

AT CENTER, THE VELOCITY OF THE 
PENDULUM IS MAXI MUM AND ITS 
POSITION IS ZERO. 

AS THE PENDULUM CONTINUES TO 
SWING UPWARD, ITS VELOCITY 
DECREASES AND ITS POSITION 
BECOMES POSITIVE. 

AS THE PENDULUM 
CONTINUES TO SWING BACK 
AND FORTH, ITS PHASE-
SPACE TRAJECTORY TRACES 
OUT A CLOSED PATH. ALL 
PERIODIC MOTION IS 
CLOSED IN PHASE-SPACE. 

VELOCITY 

POSITION 

Figure 9. The Simple, Frictionless Pendulum in Phase-Space 

As the bob falls, it speeds up.  Since it is going in a positive direction, its velocity 

(speed and position) increases. The state of the system evolves along a trajectory in 

phase-space as shown.  This trajectory traces out an orbit in phase-space. The actual state 

of the system is still a point. When the pendulum reaches center, its position is zero (by 

definition) and its velocity is maximum.  As it rises to the right of center, the position 

continues to become more positive, but the velocity decreases. The system evolves in 

phase-space as the pendulum swings, until it returns to exactly the same spot where it 
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began.  When this happens, its trajectory in phase-space closes into an ellipse.  All periodic 

behavior shows up as closed loops in phase-space. 

There is one more important aspect of the pendulum in phase-space we need to 

discuss before moving onto Chaos and randomness; that of attractors.  In the case of the 

frictionless pendulum, the attractor is the focus of the phase-space orbit a virtual point 

about which the trajectory orbits.  This is conceptually similar to the Sun being the focus 

of the orbit of the Earth.  But in our example, we assumed a frictionless pendulum. In 

reality, friction is always present, and unless we drive the pendulum’s motion with some 

external force, it will eventually succumb to friction and come to a complete rest. In 

phase-space, its trajectory would not close, but would spiral inward until the bob reached 

a steady state of zero position and zero velocity, as shown in Figure 10. In this case the 

attractor literally attracts or ‘draws’ the trajectory in phase-space to it.  One can think of 

the attractor of a periodic system as that point that the system would eventually collapse 

to in phase-space if no external forces act upon it. 

Figure 10. The Attractor of a Simple Pendulum 

Now that we’ve explored some of the most fundamental concepts of Chaos, let’s see 

what they mean in terms of predictability and control. 
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Putting It All Together 

At the risk of beating a horse that’s dead, buried, and decomposing; Chaos is not 

randomness. Nor is it periodicity.  Having looked at some basic concepts of Chaos, we 

are now in a position to see why those differences are important. 

To begin, let’s first look at a random system (Figure 11).  The left figure represents 

“raw” data as it changes with time.  The right figure shows this data in phase-space. 

Notice how ‘jumbled’ the data is in phase-space. This is because random events have 

equal probabilit y of being in any state they can be in, from one moment to the next, 

independent of the previous state.  For example, consider the classic illustration of random 

behavior: the coin toss. We know that a tossed coin has only two states available to it: 

‘heads’ or ‘tails’ .  If we toss the coin a million times, half the time the coin will land on 

heads and half on tails, but we cannot predict which toss will give which state. The 

200,550th toss has nothing to do with the first toss, the tenth toss, or even the 200,449th 

toss. All random events behave in this unpredictable way, each state independent of the 

next. A random system (Figure 11) has no structure in phase-space. 

Figure 11. Random Data in "Normal" Space (Left) and Phase-Space (Right). 
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Now look at the Chaotic data (Figure 12).  Again, “raw” data (the output as it 

changes in time) is shown on the left, and the corresponding phase-space plot of the data 

is shown on the right.  Immediately we see what Edward Lorenz called an ‘orderly 

disorder‘ in “normal” space (left). It is hauntingly close to having a pattern, and yet still 

seems so random.  But viewing this data in phase-space reveals a decided structure: what 

looks like a canted figure-8.  Within this structure the trajectories flow smoothly rather 

than disjointedly as they do in the random case. In light of our earlier discussion of 

attractors, the reader can see that there appear to be two attractors in this figure (as 

opposed to the single point attractors in the periodic data of Figure 9 and Figure 10). 

Here, the trajectory seems to be ‘drawn’ to, or attracted to orbiting around two distinct 

lobes, one to the left of center and one to the right. 

Figure 12. Chaotic Data in "Normal" Space (Left) and Phase-Space (Right). 
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Figure 13. Sinusoidal Data in "Normal" Space (Left) and Phase-Space (Right). 

In our example, the attractor of this Chaotic system is dual, it is called a strange 

attractor. A fift h truth of Chaos is that Chaotic systems often have the multi-foci 

attractors in phase-space called strange attractors.  (Many strange attractors are far more 

exotic than what is shown in Figure 12. Many are fractal in nature.  And although a 

discussion of the fractal nature of Chaos is beyond the scope of this paper, a brief primer 

on fractals and Chaos is given in Appendix B.) 

Going back to Figure 12 and the oddly structured Chaotic data, it is important to note 

that viewing data in phase-space is the first, often best tool Chaologists have for 

determining random data from Chaotic data.  The importance of this phenomenon cannot 

be underestimated. The very fact that Chaotic data has structure in phase-space, and 

random data does not, is why we can make some predictions about Chaotic data, where 

we can make virtually none (short of statistical estimates) about random data. Let’s 

develop the logic of this statement. 

Consider Figure 14. Here we see how the phase-space plot from Figure 12 is formed 

with the progression in time.  Notice that the trajectory is continuous and smooth, not like 

the jumbled mess we see with random data.  That’s because, as said earlier, for random 
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systems each state is independent of the last and so the system evolves in a disjointed 

manner.  However, Chaos is deterministic—each state does depend on the state before it 

so the trajectory has a continuity, a sort of flow to it as it evolves in phase-space. But, as 

we now know, Chaotic systems are nonlinear and so each state can fluctuate wildly from 

the one before it (not discontinuously just ‘wildly’ ).  This is what we’re seeing as the 

trajectory in Figure 14 loops from one lobe of the figure-8 to the next.  A ‘high’ in the 

data corresponds to a loop around the right lobe; a low corresponds to a loop around the 

left lobe.  We can see this especially in the bottom-middle panel of Figure 14. The two 

peaks in the data correspond to two loops around the right lobe where the one trough 

shows up in the one loop around the left lobe.  Further, since the left and right lobes 

correspond to lows and highs in the data, there is no long-term predictabilit y as to how 

many times the trajectory will loop around one lobe before going to the other—just as 

there is no long-term predictability in the pattern of the raw data.  This wild meandering 

around in phase-space is called mixing, and it is important to note that, while the 

trajectory may come very close to a previous state, the orbit never closes as it does in the 

case of periodic data.  This is another way of saying Chaotic data never falls into a 

repetitive pattern, though sometimes small portions of the data form patterns that are 

extremely similar to other portions.  It is a sixth ‘truth’ of Chaos that all trajectories of 

Chaotic systems exhibit mixing in phase-space. 

26




Figure 14. Detailed Evolution of Chaotic Data in Phase-Space 

Nonetheless, even though the data swirls around the lobes in an unpredictable way, it 

still stays within the bounds of the figure-8. Yet another truth of Chaos is that all Chaotic 

systems are bounded, which is exactly what we are seeing when we see the figure-8: the 

system is constrained within boundaries. 

Thus to summarize the previous paragraphs: the deterministic nature of Chaos 

guarantees a continuity from one state to the next, which is why the trajectory in our 

example seems to ‘ flow’ in phase-space. But the nonlinear nature means that the changes 

are extreme, causing, in this example, wild looping from one lobe to the next. 

What about another of the ‘truths’ we discussed earlier, that of sensitivity to initial 

conditions (SIC)?  SIC is also evident in phase-space plots.  Recall that as a result of SIC, 

the slightest variation during the time evolution of the system results in vastly different 

outcomes. We can see this in Figure 15. The panels in the left-hand column are the same 
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ones from Figure 12, and they correspond to the lighter colored line in the center figure. 

When we vary initial conditions slightly we get the darker line in the center figure. The 

frames in the right-hand column are the evolutions of this darker line in phase-space. 

Notice how, in the center figure, the lines start at about the same point, but very quickly 

the patterns diverge.  We also see this in phase-space.  Initially, the phase-space 

trajectories for both sets of data look very similar (top two frames in both columns). But 

in the middle frames we see that the original system spends more time orbiting the right 

lobe, whereas the system subjected to slightly, different initial conditions spends more time 

orbiting the left lobe.  But the trend of the data is the same.  It still t races out a figure-8 

pattern! Thus even though the trajectories wildly mix in phase-space we can still make 

long-term trend predictions!  But, because of both the nonlinearity in the system and the 

tendency for Chaos to be SIC, we can’t make predictions for more than a few iterations. 

And, depending how extremely nonlinear and/or SIC the system is, we sometimes can’t 

even do that. 

Despite these limit ations, hopefully the reader can see from our lit tle graphical foray 

that there is a definite difference between Chaos, randomness, and periodicity. Bottom 

line? Chaos is less predictable than periodicity, but more predictable than randomness.  It 

is, as we alluded to in the first chapter, ‘something completely different.’ 
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Figure 15. SIC in Phase-Space 
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Some Practical Advice on Recognition and Control 

Recognition 

The first step to control is recognition.  We’ve seen in the last section that one of the 

easiest ways to recognize Chaos is by simply plotting the data as a function of system 

variables, that is, plotting the data in phase-space. But, in fairness to the reader, this is the 

easiest, but not the only way, nor is it always such a straightforward procedure. 

What was presented in the earlier sections were two-dimensional projections of what 

can often be multi-dimensional phase-space. For more data with more variables and/or for 

incomplete data sets, other techniques of analysis need to be used. These techniques 

include things like calculating Lyapunov exponents, which are a measurement of how 

6“fast” the trajectories represented on a phase-space plot diverge from each other. Other 

means include calculating quantit ies with names like Hasdorf dimensions and Capacity 

dimensions: representations in embedding space, etc., but this is all beyond the level that a 

vast majority of milit ary professionals need to concern themselves with.  It is mentioned 

here for two reasons.  First, so as not to leave the reader with the impression that 

recognizing Chaos is always simple.  The examples used in the paper are completely 

legitimate, but were chosen for how well they demonstrated the classic nature of Chaotic 

systems.  Second, the author wishes to caution any military professional who may find 

themselves involved directly with analyzing Chaotic systems, or who work with 

contractors who will be analyzing such systems, on two points: 

1.	While there is no “cookbook” for analyzing Chaotic systems, there are a number of 
software packages developed by credible professionals that describe methods and 
provide subroutines necessary to perform systematic analyses of Chaotic systems. 
(One such comprehensive, albeit user-unfriendly, package was used by the author 
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to generate many of the plots in this paper.)7  The not-so-subtle point here is don’t 
pay to develop analysis software before investigating which Commercial Off-The-
Shelf (COT) or Government Off-The-Shelf (GOT) options are available. 

2. On the other hand, analyzing Chaotic systems is still more art than science. 
Although COT and GOT analysis packages exist, they will almost certainly require 
that whomever uses the packages thoroughly understand them and thoroughly 
understand Chaos.  In other words, don’t use the existing packages like a 
proverbial ‘black-box.’ 

The above cautions are the same basic ones military professionals always apply to 

analyzing military systems.  However, because Chaos Theory still has a sort of 

‘mathematical mystique’ around it, these cautions are worthy of repeating here. 

Control 

Can we control Chaos; prevent its onset, or even induce it? We’ ll discuss reasons 

why we might wish to induce Chaos shortly, but the answer to the question can we control 

Chaos is, sometimes, yes. 

Recall our example of the logistics equation as it applied to fish populations. One 

parameter, the average number of offspring per adult, controlled whether that equation 

produced steady state, periodic, or Chaotic results.  But, as above, the author cautions 

that this simple result should not be too misleading.  In this illustrative case the control 

parameter was obvious. It isn’ t always that obvious in all cases. That doesn’t mean it’s 

impossible.  The control parameters for many systems are known, but finding these control 

parameters is also far more art than science at the present.  Still,  the benefit s of being able 

to drive a system in or out of Chaos are obvious.  This is an area worthy of the military’s 

attention. 

Another means of controlling Chaos, besides finding and ‘tweaking’ control 

parameters, is through the introduction of transient phenomenon. Transient motion can be 
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described as “motion that has not yet settled down to a steady and regular pattern.”8 

Allan McRobie and Michael Thompson in Exploring Chaos, give an example of how 

several large, nonperiodic waves impacting the hull of a ship can cause the ship to 

capsize.9  The author has faith that such considerations are currently part of our Navy’s 

ship building techniques, however, military specialists who are involved with Nation 

Assistance may find that other, less technically-advanced nations may find this interesting. 

We will give other examples of systems where considering transient phenomenon may be 

important in the next chapter. 

Summary 

The following list summarizes the basic definition of Chaos that we’ve given in this 

chapter. This list is a modified version of James’ definition of Chaos (for a more 

expansive definition see James’ tutorial).10 

1.	 Chaotic Systems are 
deterministic, 
nonlinear, 
sensitive to initial conditions, 
bounded. 

2.	 Chaotic Systems are not 
random, or 
periodic. 

3. The trajectory of Chaotic data mixes in phase-space 
4. A chaotic system usually possess strange attractors, often with fractal dimensions. 

Because of the nature of Chaotic systems as stated in the above list: 

1. There is an underlying structure to Chaotic systems that sometimes allow us to 
make predictions about 

long-term trend behavior and, 
very short-term behavior but, 
prevents us from making long-term predictions overall. 

2.	Some Chaotic systems can be driven in or out of Chaos; that is, Chaos can 
occasionally be controlled. 
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These are the basic conclusions we can draw about Chaotic Systems.  The following 

chapter gives some specific examples of Chaotic Systems of military concern. 

Notes 

1 We can certainly argue that both societal chaos and the Chaos of physical systems 
are major constituents of battlefield ‘fog.’  Such a discussion is outside the scope of this 
paper, but the interested reader may wish to refer to the works of Kelly and McIntosh as 
cited in the bibliography for relevant discussions. 

2 Actually any value between 1 and 3 gives the same steady result, only taking greater 
or less time to reach stability. 

3 DeBlois, Bruce. Deterministic Philosophical Assumptions in the Application of 
Chaos Theory to Social Events, Maxwell AFB, School of Advanced Airpower Studies, 
not published, 3. 

4 Gleick, James. Chaos: Making a New Science, New York, Penguin Books, 1988, 
15. 

5 Adapted from Gleick, James. Chaos: Making a New Science, New York, Penguin 
Books, 1988. 

6 James, Glenn. Chaos Theory: The Essentials for Militar y Applications, Newport, 
R.I., Naval War College, 1995, 44. 

7 Sprott, Julian and Rowlands, George. Chaos Data Analyzer:  The Professional 
Version, New York, Physics Academy Software, American Institute of Physics, 1994. 

8 McRobie, Allan and Thompson, Michael. Exploring Chaos, ed. Nina Hall, New 
York and London, W.W. Norton and Company, 1991, 150. 

9 McRobie, Allan and Thompson, Michael. Exploring Chaos, ed. Nina Hall, New 
York and London, W.W. Norton and Company, 1991, 150. 

10 James, Glenn. Chaos Theory: The Essentials for Militar y Applications, Newport, 
R.I., Naval War College, 1995, 44. 

33




Chapter 3 

Applications 

Now that science is looking, chaos seems to be everywhere . . . Chaos 
appears in the behavior of the weather, the behavior of an airplane in 
flight, the behavior of cars clustering on an expressway, the behavior of 
oil flowing in underground pipes.  No matter what the medium, the 
behavior obeys the same newly discovered laws.  That realization has 
begun to change the way business executives make decision about 
insurance, the way astronomers look at the solar system, the way a 
political theorists talk about the stresses leading to armed conflict. 

—James Gleick 
Chaos: The Making of a New Science 

Hard Science 

In the first chapter, the author made the seemingly presumptuous statement that there 

are countless, real, physical systems upon which military lives and missions depend that 

are Chaotic systems. This section summarizes just a handful of these so that the reader 

can gain a sense for the breadth of such systems. 

In his book, Gleick remarked that “Turbulence was a problem with a pedigree.” It is 

certainly a problem of great importance to the military.  Turbulent flow affects a multitude 

of military systems.  Flow over aircraft wings is turbulent.  The Shuttle must deal with the 

turbulence at the entire range of atmospheric conditions and over a wide range of speeds. 

Paratroopers jumping out of airplanes encounter not only turbulence from the effects of air 
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flowing around the aircraft, but, it has been suggested to the author, they might also be 

affected by turbulence caused from previous jumpers.  Turbulence endemic to the 

atmosphere itself, can affect imaging from space. One of the Air Force’s Space “Battle 

Labs,” the Phillip s Laboratory, Kirtland AFB, New Mexico, has worked on the effects of 

Chaotic turbulence on imaging through the atmosphere for almost two decades. This 

work is intrinsic to “atmospheric characterization, wave front correction and image 

processing”.1 Construction of adaptive optics sensors that take into account turbulence 

through the atmosphere have been one of the most significant contributions to the 

milit ary’s Space Object Identification mission in decades. The effects of turbulence in the 

atmosphere applies to more than just imaging.  It has application to propagation of lasers 

through the atmosphere, for example. 

Beyond atmosphere-related issues, turbulence flow is found in the mixing of fuels in 

some missiles, in aircraft and virtually any liquid-propelled engine.  Turbulence flow is 

found in water pipes that military engineers build through rugged terrain for temporary 

basing and in the pipes that feed the water fountain in the Pentagon. Turbulence affects 

nearly every aspect of the military. 

While the propagation of lasers through the atmosphere involves turbulence 

considerations, lasers themselves are affected by nonlinear fluctuations that appear to be 

Chaotic.2  Lasers are becoming decidedly ubiquitous in the milit ary today, used in 

applications ranging from medical to imaging to weapon building. 

Other Chaotic systems of great interest to the military may be found in the human 

body.  Dr. Ary Goldberger of Harvard Medical School has argued that “…Chaos gives the 
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body flexibilit y to respond to different kinds of stimuli, an in particular that the rhythms of 

a healthy heart are Chaotic.”3 

We have already made note of how transient wave phenomenon can effect the 

stabilit y of ships, possibly resulting in capsizing.  Other examples of transient phenomenon 

potentially driving systems of military interest Chaotic include the effects of earthquakes 

on nuclear power plants, offshore oil platforms buffeted by waves, or even printers 

undergoing internal vibrations.4 

Electrical circuits are havens for the development of Chaotic behavior. Almost 

everyone is familiar with the significance of feedback in audio and electrical systems. 

Feedback that cannot be compensated for can drive a system into Chaotic behavior and 

can drive it out of such behavior in electrical systems just as we’ve seen it can do in the 

case of the logistics equation.  In his article Chaos on the Circuit Board,5 Jim Lesurf states 

that “(amplifiers) can compare the fed-back signal with the original, and any difference 

between them can be used to correct the output, predicting a better result.…Feedback can 

be tremendously helpful in reducing nonlinearities.  But it must be applied with care, 

because adding feedback to a nonlinear circuit with gain is a recipe for chaos.”6  He 

further goes on to remark that “Milit ary communication systems, for example, sometimes 

transmit radio signals designed to ‘hide’ in the background noise.  These cannot actually 

be random, otherwise they would not convey any information, but they should imitate real 

noise as closely as possible to avoid being noticed by eavesdroppers. The kinds of signals 

produced by ‘chaotic oscillators’  may be ideal for this.” 7  Lesurf expands on this idea in 

another nifty little article entitled “A Spy’s Guide to Chaos,” 8 in which he suggests ways 

of using Chaos for codemaking and codebreaking. 
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Whether as a consequence of our military environment expanding outward into space 

or in response to the recent popularization of “catastrophic scenarios”, the subject of 

asteroids is of increasing interest to the military.  It is hypothesized that asteroids ‘gaps’ 

(regions almost totally devoid of asteroid such as the Kirkwood Gap which lies between 

the orbits of the Earth and Mars), are the result of resonances between these regions and 

the orbits of the planets—Jupiter in particular.  In essence, these regions where objects 

might orbit, have been “cleared out”  by the “gravitational tug” of other planets.  These 

regions are not completely empty, however, and these gaps include a few asteroids large 

enough to cause catastrophic consequences if they impacted the Earth.  Calculations have 

shown that “Chaotic orbits of objects at the 3:1 (Kirkwood Gap) resonances could 

become eccentric enough for them to start crossing the Earth’s orbit.” 9  In the light of the 

spectacular impact of Comet Shoemaker-Levy on Jupiter in 1994, today, a small but 

growing portion of military resources are being allocated to study the potential impact of 

large asteroids with the Earth.  This is going to have to include a consideration of the 

Chaotic nature of the trajectories of heavenly bodies. 

So What? 

While this list has not been exhaustive, it has hopefully given the reader a feeling for 

the broad scope of applications for Chaos Theory.  This doesn’t mean that all military 

professionals should rush out and become Chaos experts.  Without argument Chaos exists 

in many physical systems.  But the average pilot, for example, doesn’t need to understand 

the physical causes of turbulence on aircraft wings.  He or she only needs the wings to 

‘stay on,’ but doesn’t necessarily need to know why they do.  Indeed, many particularly 
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practically-minded milit ary professionals might be quite underwhelmed with Chaos Theory 

at this point.  Thus far, this paper has been solely concerned with Chaos in physical 

systems.  Many people don’t deal with analyzing these types of systems, so, they might 

think, why should they care? The reason is—much to the dismay of many Chaologists— 

even though Chaos Theory is strictly a mathematical theory it is being applied to many 

non-physical applications.  Like it or not, Chaos Theory has found its way into the 

philosophy of warfare, in the same way Clausewitz applied ‘good old-fashioned’ 

Newtonian linear thinking when he coined the idea of military ‘centers-of-gravity.’ 

Furthermore, it has also become very popular for polit ical scientists and milit ary strategists 

to apply the tenets of Chaos Theory to such soft-science issues as political science and 

international relationships.  Therefore, even for the military professional not specifically 

concerned with physical Chaotic systems, he or she might encounter Chaos Theory as 

applied to non-mathematical systems (or at least encounter attempts to do so). And 

understanding of what Chaos Theory really is—deterministic, non-random, nonlinear, and 

so on—should give the reader better insight into how viable these attempts are.  The next 

sections briefly outline the positives and pitfalls of applying mathematical theory to non-

mathematical phenomenon. 

Metaphor 

There’s nothing wrong with a good metaphor—the military loves metaphors.  We 

teach them at our professional milit ary schools and even incorporate them into our 

doctrine. For example, when the early nineteenth century military strategist, Carl von 

Clausewitz, introduced the idea of military ‘centers-of-gravity’ (COG) he was applying a 
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metaphor of linear, Newtonian logic.  In physics, the center of mass (gravity) of a system 

is that point which moves as if the entire mass of the system were concentrated there and 

all external forces were acting only on that point.  Current doctrine has embraced this 

metaphor passionately, redefining center of gravity metaphorically, as “Those 

characteristics capabilit ies, or localit ies from which a military force derives its freedom of 

action, physical strength, or will t o fight.” 10  This is not a bad redefinition (although a surly 

physicist could pull it apart in a heartbeat).  But the metaphor of the COGs does what it 

needs to do.  It forms a frame of reference based upon a generally well understood 

concept, thereby facilit ating discussion and development of ideas.  What more could we 

want from a metaphor?  Most military professionals today, especially as they reach higher 

ranks and deal more frequently with strategic issues, recognize the importance with 

keeping up with the philosophy of warfare and all the metaphors we commonly use. 

Especially since current doctrine enforces the need to remain cognizant of popular 

metaphors.  For example, Joint Publication 5-0 requires that military planners consider 

enemy and friendly COGs in the creation of campaign planning, among other things.11 

What does this have to do with Chaos Theory?  Simply this: Clausewitz is being 

updated.  Graduates of our professional schools and other milit ary professionals alike are 

re-exploring Clausewitzian COGs, as well as other metaphors that were based on the kind 

of ‘Pre-Chaos World View’ DeBlois presented in Figure 5. Two of the better examples of 

Clauswitz being rewritten in light of Chaos theory are referenced in the bibliography. 

They are “Modern Scientific Metaphors of Warfare”  by Patrick Kelly III, and “Quality, 

Clausewitz and Chaos,” by Richard McIntosh, with the latter possessing a good summary 

of Chaos Theory itself.  Thus, military professional interested in philosophy and strategy 
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of warfare are quite likely to be seeing Chaos Theory in the future.  A working knowledge 

of Chaos Theory should be quite helpful to those individuals. 

Soft Science 

One area of growing interest in Chaos research today is whether Chaos Theory—a 

mathematical description of deterministic instabilit y—is applicable to ‘soft science’ issues 

such as economics, politics, or sociology.  In the quote beginning this chapter, we saw that 

Gleick mentions that Chaos Theory has inspired “political theorists talk about the stresses 

leading to armed conflict.” Many authors are now writing about Chaos Theory as it might 

apply to polit ico-milit ary situations. Some do so logically and some do not.  As an 

example, Alan Saperstein, is logically and systematically investigating the applicabilit y of 

the Chaos Theory to topics of military interest ranging from “Cold War” arms-race 

scenarios to issues of Post-Cold War, world wide and regional polit ical stabilit y.12  A 

professor of physics and a member of the executive committee in the Center for Peace and 

Conflict Studies, Saperstein has had a Foster Fellowship with the U.S. Arms Control and 

Disarmament Agency and Fellowships with the Fullbright Foundation and the National 

Science Foundation. He is, obviously, a credible source, and his theories are making an 

impact on the polit ical and milit ary strategic planning communities.  Thus, as with the case 

of rewriting Clausewitz, military professionals are going to see Chaos Theory applied 

more frequently in the future to polit ico-milit ary issues among other such soft science 

applications. 

But, while it is reasonable to apply Chaos on a metaphorical level, is it really feasible 

to apply what is a mathematical theory to situations driven by human factors, such as 
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those which fall under the regime of so called ‘soft’ sciences? That is to say, does it really 

make any sense to try to calculate ‘bifurcations in polit ical memberships of treaty 

organizations,’  or try to identify a hidden structure in the Stock Market using phase-space 

analysis?  The answer to this, in part, depends on whether or not the ‘human factor’ 

driving such situations—for want of a better term ‘ free will’ —is deterministic or random. 

We have said repeatedly that Chaos is deterministic.  Consequently, if we believe that free 

will derives from the same inherently unpredictable stochastic causes as randomness does, 

we simply can’ t apply the mathematical analysis techniques of Chaos to societal situations 

that are driven by this stochastic free will.  DeBlois, for example believes this way, as 

we’ve seen in Figure 5 and Figure 6 that the author borrowed from his insightful paper. 

On the other hand, there’s no proof that free will isn’ t deterministic.  Consider the old 

joke, “If are brains were simple enough for us to understand, we’d be too simple to 

understand them.”  Those who regard free will as deterministic could argue that thought 

and free will are nothing more than a manifestation of ‘cosmic programming’; a sort of 

underlying determinism that is to complex for us to understand (that is, our brains are 

basically computing machines driven by the same causes that drives the physical universe; 

we’re just not smart enough to understand how).  If this were the case, and free will is 

deterministic, then perhaps we can apply mathematical techniques of Chaos Theory to 

societal situations.  And, if we are able to apply mathematical techniques of Chaos Theory 

do apply to societal situations, what does that say about how ‘free’ free will is? 

But what value are these kinds of arguments to a practical mind?  If nothing else, to 

show that we must be very careful not to blindly apply the mathematical techniques of 

Chaos Theory to soft science issues. The reader needs to keep in mind that Chaos Theory 
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is a mathematics-based description of how real, physical systems behave.  We cannot 

expect this theory to apply to situations that are driven by random, or similarly stochastic 

conditions. If human factors such as free will aren’ t stochastic, we might be able to apply 

Chaos Theory to societal situations.  But, if free will is stochastic, then it might make no 

sense to apply mathematical predictions based on deterministic Chaos to such systems. 

While many people may yet think of Chaos Theory as ‘ fashionable number crunching,’ 

many believe that the real ‘smoke and mirrors’  may lie in the attempts to apply it to non-

mathematical soft-science issues. Yet, as strategic thinkers become more interested in the 

concept of nonlinear, bounded, deterministic behavior in social situations, the military 

professional is increasingly likely to encounter attempts to apply Chaos Theory from 

topics which range from updated Clausewitzian metaphor to the “bifurcation in regional 

politics.” Hopefully, the reader is now better prepared to evaluate and/or discuss such 

topics. 

Notes 

1 McMackin, Lenore; Voelz, David and Fender, Janet, Chaotic Attractors in the 
Transition Region of an Air-Jet Flow, [unpublished, n.d.], 1. 

2 Chaos Data Analyzer:  The Professional Version, New York, Physics Academy 
Software, American Institute of Physics, 1994., 43. 

3 Chaos Data Analyzer:  The Professional Version, New York, Physics Academy 
Software, American Institute of Physics, 1994, 41. 

4 McRobie, Allan and Thompson, Michael, Exploring Chaos: A Guide to the New 
Science of Disorder ed. Nina Hall, New York and London, W.W. Norton and Company, 
1991, 151 

5 Lesurf, Jim, Exploring Chaos: A Guide to the New Science of Disorder ed. Nina 
Hall, New York and London, W.W. Norton and Company, 1991, 164. 

6 Ibid., 173. 
7 Ibid. 
8 Ibid., 29-33. 
9 Murray, Carl, Exploring Chaos: A Guide to the New Science of Disorder ed. Nina 

Hall, New York and London, W.W. Norton and Company, 1991, 103. 
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Chapter 4 

Thinking ‘Chaotically’ 

“Why,” said the Dodo, “the best way to explain it is to do it.” 

—Lewis Carroll 
Alice’s Adventures in Wonderland 

Thus far, this paper has focused on definitions.  But to really understand a concept 

one has to use it, or, as Alice’s very practically-minded friend the Dodo espoused, the best 

way to explain a thing is to do the thing. 

How then do we ‘do’  Chaos?  How do we learn to apply this new view of reality to 

the world around us? One obvious way would be to pick a physical system, like a wing 

subjected to turbulent flow, and work through the issues of finding and controlling Chaos 

in this system. But first, such a tract would be mathematically outside the scope of this 

paper, and second, it’s likely to be of lit tle interest to many individuals who aren’ t 

aerospace engineers or the like.  Instead, in keeping with the spirit of Chaos being 

‘something completely different,’  let us focus on doing something distinct from simply 

looking at well-known examples.  Let us focus on process by examining the type of 

questions that should be asked when analyzing a system for Chaos. 

To do this, the author has deliberately chosen an example of a system that, at the time 

of this writing, has not been systematically studied.  The positive aspect to doing this is 

that we won’t be confined by assumptions and conclusions already made, but instead can 
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make our own.  However, this approach means that this section becomes an open-ended 

discussion, resulting (hopefully!) in more questions than answers.  This tact might be 

disturbing to some. Further, this is one person’s (the author’s) suggested way of thinking 

about the issues, and thus the conclusions are a matter of the author’s judgment. This 

section is not meant to represent the one and only means of working through the issues, 

nor is it even intended to be exhaustive.  It is simply the suggested first steps on a journey 

to learning a new way of thinking about the world around us.  Hopefully,  most will fin d it 

an interesting exercise in learning to ‘think Chaotically.’ 

The first risk we will take in this section is defining a system that is not a cut-and-dry 

physical system, like a bridge, or engine, or aircraft.  Instead, we will lo ok at a system-of-

systems: the multiple centers-of-gravity (COGs) and parallel warfare.  This is a topic of 

increasing interest in the wake of Desert Storm, where the techniques of parallel warfare 

proved very successful for the Coalition Forces. In this context, parallel warfare means 

the abilit y to strike at several centers-of-gravity (COGs) in diverse locations, 

simultaneously. This is in contrast to the notion of serial warfare which involves one 

nation’s fielded forces engaging another’s directly, and attempting to ‘roll them back’ 

from the front lines to the interior of the battlefield. 

Our ‘system’ consists of multiple COGs; the input to the system are targeting 

decisions and actions made by friendly forces; and the output of the system is degradation 

of enemy capabilit ies.  Following an idea of DeBlois,’ this can be expressed as shown in 

Figure 16. To make this notion more quantifiable, we will use Col (ret) John Warden’s 

Five-Ring model to visualize COGs as segmented into five categories, or nested rings: 

leadership, organic essentials, infrastructure, population, and fielded forces (Figure 17). 
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This model assigns greater importance to striking at ‘inner ring’ targets over those in outer 

rings, the assumption being that a nation is less likely to tolerate and/or be able to absorb 

the losses of loosing ‘inner ring’ systems.  The model assumes that each ring can also be 

broken into self-similar rings.  For example, a COG within the organic essentials ring 

might be electrical power production.  Within the system of oil production there are 

elements of leadership, infrastructure, and so on. 

INPUTS MECHANISM OUTPUTS 

Targeting Decision Physical Damage Degradation of enemy 
and Actions  to COGs warmaking capabilities 

Feedback 

Figure 16. Test Case System 

Fielded Forces 

Population 

Infrastructure 

Organic Essentials 

Leadership 

Figure 17. Warden's Five-Ring Model 
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To investigate the potential use of Chaos Theory for parallel warfare, we need a 

yardstick; a means to measure the system against, to decide if the principles of Chaos 

Theory apply (either mathematically, or metaphorically).  A reasonable ‘yardstick’ might 

be the basic concerns as outlined in this paper in the form of the following: 

1. Is the system driven by deterministic or stochastic causes? 
2. Is it nonlinear? bounded? sensitive-to-initial conditions? 
3. Does the output exhibit mixing or strange attractors? 
4. Are there control parameters? 

We begin by asking perhaps the most important question first.  Is the system driven 

by deterministic or stochastic processes? Unfortunately, in this case, this is the hardest 

question to answer unambiguously.  At one extreme, we could say that the input certainly 

doesn’t appear to be purely random.  The decisions of COGs to attack isn’ t decided by 

flipping coins or some other such process (even though the outcome may sometimes look 

that way to the most cynical among us).  Decisions are based on strategic political, 

milit ary, and economic choices.  Further, the output effects the input; that is one state 

(choice of targets) does depend on the previous one (effect on previous targets). There is 

feedback. However, individual free will and group decision making (which has a ‘will’ of 

its own) greatly influences the procedure.  Those who do not believe that free will is 

stochastic might not be bothered by this and might conclude that this system certainly 

appears to be deterministic.  But those who believe free will is strictly stochastic, might 

have a great deal of difficulty with believing that any system that involves free will as input 

can result in quantifiable Chaos. They may believe that it isn’ t logical apply the 

mathematical notions of Chaos Theory to any situation involving human decision making. 

For those individuals the answer to whether Chaos Theory applies to any type of warfare 
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ends here; it does not.  However, we might argue that there is a difference between a 

system driven by free will and one that is influenced by free will, much like there is a 

difference between driving forces and transient forces. 

So, is our test system deterministic or stochastic?  The above argument is not 

intended to answer that unambiguously, but instead to engage the reader reaching his or 

her own conclusions. 

For the sake of argument, let’s continue to measure this system against some of the 

other tenets of Chaos.  For example, does the system exhibit nonlinearity? One might 

argue that the very notion that some COGs are thought to create substantially greater 

degradation to an enemy’s capabilit ies than others (that is, COGs from the inner rings are 

more important than from the outer rings) might be an example of nonlinearity.  But it’s 

not easy to quantify how much greater, thus it’s hard to say if that is an example, even 

metaphorically, of nonlinearity. 

What about some other potential nonlinearities in the system?  Let’s go back to our 

organic essentials example of electrical production.  Sub-ring elements of this COG (which 

could also be called nodes) are such things as its leadership, workers, power stations, 

transformer stations, water coming into the system, and power lines moving the electricity 

out.  Suppose, for example the system has two transformer stations, one which feeds a 

power station and one which feeds five power stations.  If we destroy or degrade the first 

transformer station, we affect one power station, and if we hit the second we destroy five. 

Is this nonlinearity?  Further, each of the degradation of the power stations might affect 

electrical power in the villages where the workers eat, sleep, and live, thus degrading their 

effectiveness. Subsequent power outages could also affect the transportation systems that 
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bring the repair crews in to repair the power stations in the first place.  Thus, the 

interconnectedness seems not only to represent a type of nonlinearity, but also is a form of 

feedback into the system. At least on a metaphorical level there appears to be nonlinearity 

in this system. An analysis of repair rates and effects on production might show more 

concrete, quantifiable results. 

What about boundedness?  First, we could quantify boundedness of the system in 

terms of damage.  Doing so would be limited by the accuracy of battle damage 

assessments (BDA), and would also be subject to definitions, such as: how much 

destruction constitutes degradation versus destruction or how does repair rates/times 

figure into BDA.  For example, destroying one transformer station isn’ t likely to destroy 

the enemy’s abilit y to wage war completely, but anything friendly forces do will have some 

effect.  These are extremely broad definitions, and to be more precise we would have to 

actually analyze BDA values. The reader might ask themselves at this point, what other 

examples of boundedness exist in parallel warfare. 

What about SIC?  One example might be found in going back to the damaged 

transformer stations.  Once the transformers are damaged, crews will r ush to repair them. 

How quickly the repair crews can get their job done will depend on a number of 

conditions. Daylight versus nighttime, dry season versus monsoon, experienced versus 

novice crew-persons could make a vast difference in repair rates.  In fact, to think of the 

applicability of SIC to warfare in total one needs only be reminded of Emerson’s words: 

For want of a nail, the shoe was lost;

For want of a shoe, the horse was lost;

For want of a horse, the rider was lost;

For want of a rider, the battle was lost;

For want of battle, the kingdom was lost!
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Sensitivity to initial conditions certainly seems to apply.  Further, the issue of non-

periodicity seems quite clear cut.  Repeating the same input, will almost certainly never 

give the same output. 

As for questions about the behavior of the system in phase-space (mixing, strange­

attractors), unfortunately, there is no data present from which to derive this information. 

But this does lead us to the question, what variables might we be looking at is we had the 

data. This is an important question because it addresses the issue of control parameters. 

For example, some logical control parameters of this system would seem to be repair rates 

and frequency of re-strikes.  Suppose we could graph the BDA of multiple COGs as a 

function of how quickly the targets could be repaired versus how frequently we needed to 

re-attack the targets to ensure a desired level of degradation.  Would these parameters be 

enough to find structure that we could exploit? Could we discover, for example, a pattern 

of re-strike tempo that might help us maximize damage and minimize wasted resources. 

Or is it all ‘a load of fashionable number crunching?’ 

Unfortunately, without data, the answer as to whether or not our system is Chaotic 

from a purely mathematical viewpoint isn’ t possible at the moment.  There is reason for 

regarding it metaphorically as Chaotic.  But as stated in the beginning, this section wasn’t 

intended to unambiguously answer all questions.  The system presented was simply one 

the author thought might be worth further investigation if the data can be found.  Instead, 

our purpose here was to present a process for looking at systems from a Chaos point of 

view.  If nothing else, hopefully, the reader now understands that except in the case of 

physical or mathematical systems, applying the definition of Chaos to societal situations is 

often a matter of assumptions, judgments and opinions. 
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Chapter 5 

Conclusions 

The peaceful partnership society of our Cro-Magnon ancestors was 
characterized by the three-way cooperation of three principles, Chaos, 
Gaia and Eros, symbolized by the triple-headed goddess TriVia, the 
Pythagorean Y, and the victory symbol that emerged during World War II, 
and in the peace movement of the 1960s.  The healing of our planetary 
society from scars of the past six millennia, the Periodic Epoch, will be an 
Orphic enterprise. We must welcome the Chaotic Epoch. 

—Abraham 
Chaos, Gaia, Eros 

The above quote, sadly, is not a joke (unless the entire book is an inside joke). 

Instead, it is an example of the increasing number of books that portray Chaos Theory as 

some Grand Unifying Metaphor (GUM) for everything.  The author is not attempting to 

denigrate the work of Abraham, but this quote does show why Chaos is considered by 

many to be ‘a load of fashionable number crunching’ at best, or a kind of theory du jour of 

cocktail party scientists, at worse.  Unfortunately, there is a vast swell of books on Chaos 

Theory that give nothing more than lip service to the real underlying mathematical 

principles of Chaos.  The author hopes that this paper has helped the reader understand 

these principles, at a conceptual level, so as to be able to judge for himself of herself when 

Chaos Theory applies and when it doesn’t.  Those issues the author considers the most 

important for the reader to remember at the conceptual level are: 
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Chaos is deterministic, nonlinear, non-random, and non-periodic; 

1.	 It is a different way of viewing reality from the previous ideal that systems could 
only be completely unpredictable and random, or completely predictable; 

2.	 Because Chaos is not random, we can often make long term trend predictions 
about behavior, and occasionally make very short term predictions as well; 

3. Chaotic systems are ubiquitous and milit ary lives and military missions may depend 
on knowing the difference between Chaos and randomness, and on knowing when 
a previously well-behaved system may suddenly become Chaotic; 

4. Milit ary philosophers and strategists are likely to see a rise in the application of 
Chaos Theory to metaphorical and soft-science issues; 

5.	While Chaos can be applied logically at a metaphorical level, there are many 
questions as to how and if Chaos Theory can ever be applied in the soft-sciences. 

Chaos is truly a different way of looking at the world around us. For some, this will 

be a profound difference.  For others it won’t.  Hopefully, this paper has provided the 

reader with enough information for him or her to decide how important Chaos Theory is 

to his or her world view. 
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Appendix A 

The Logistics Equation 

The logistics equation is a canonical example of Chaos.  Used largely in population 

biology studies, it shows how the population of a species can vary year, by year, based 

only on the previous year’s population and the average number of offspring per adult. 

As an example, assume the logistics equation is used to predict fish repopulation. The 

actual population, given between a value of 0 and 1, at any future time t+1 is designated 

xt+1.  This value simply depends on the last value of the population, xt, multiplied by the 

number of offspring that each adult produces in the absence of overcrowding, �, 

multiplied by a factor that represents the “feedback from effects due to density or 

crowding1”, (1-xt). Thus the logistics equation is: 

2 xt = �xt(1-xt+1) = �xt - �xt 

Equation 1.


Note that this is a nonlinear equation, which, in its most basic definition means that the


output of the equation is not directly or inversely proportional to its input.  In this


equation the output is proportional to the square of the input (see Glossary definition of


nonlinear). The modern physics education which the author was subject to, shies away


from comprehensive treatment of nonlinear equations—except for the rare few that can be


solved with convenient “tricks of the trade” such as perturbation theory—for very good


53




reasons. Although dynamical (i.e., time-dependent) nonlinear equations can be very 

simple, as is the logistics equation, they can produce “nasty” results, such as a sudden loss 

of stabilit y for no obvious reason.  Again, using the logistics equation as an example we 

note that if we put set � (the number of offspring each adult produces) between 1 and 3, 

the population rises to a “saturation”  level (see Figure 1).  But if each adult produces more 

than three offspring a bifurcation (Figure 2) occurs. (Bifurcation is another word that 

people seem to love to misuse. A bifurcation refers to drastic change in the dynamical 

pattern, i.e., the quantitative state of a system—see the Glossary). What’s happening is 

that the population overshoots a stable solution (i.e., “booms”), so the feedback induced 

by the (1-xt) term causes the a “bust,” the next year, for which the feedback again 

overcompensates, causing another boom and so on and so on.  Hence the saw tooth 

pattern which, in this case represents what is called, period doubling, or period-2. Now if 

we increase � again, to about 3.6, the nonlinear feedback induces even more dynamical 

change; the period doubles again to a period-4 response Figure 3).  It’s all a function of 

feedback.  But as anyone who has ever set up their own audio system knows, feedback 

can be a nasty thing.  If the feedback is too large for the system to “compensate” for the 

system goes unstable; it goes Chaotic! Figure 4 shows this “apparently random” pattern. 

This behavior is a function of the nonlinearity of the equation.  In fact, all Chaotic systems 

are nonlinear. Further, linear systems can’t be chaotic.2 

Notes 

1 May, Robert. Exploring Chaos, ed. Nina Hall, New York and London, W.W. 
Norton and Company, 1991, 83. 

2 James, Glenn. Chaos Theory: The Essentials for Militar y Applications, Newport, 
R.I., Naval War College, 1995, 42. 
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Appendix B 

Fractals and Strange Attr actors 

As shown earlier in this paper, many Chaotic systems demonstrate an odd, “multi-

focal point” structure in phase-space called a strange attractor, for more complicated than 

the Lorenz attractor shown in Figure 12.  Some strange attractors are fractal. Even 

though a full discussion of fractals and strange attractors are outside the scope of this 

paper, the following offers a brief primer.  The curious reader is encouraged to read the 

works of Gleick and James, cited in the bibliography, as the next logical step in examining 

the relationship between fractals and strange attractors. 

Fractals are not a new concept to most people. Almost everyone can recognize the 

elegantly intricate Mandelbrot Set first brought to light by Benoit Mandelbrot and which 

seemed to grace every science-graduate student’s cubicle in the 1960s.  More formally, a 

fractal can be regarded as a measure of the degree of “roughness,” “ irregularity,” or 

“fractionation” of an object. A point has a fractal dimension of 0, as it has no 

“dimension.” A line is said to have the fractal dimension of 1, a plane has the fractal 

dimension 2, and a three dimensional surface has the fractal dimension 3. However a 

jagged coastline will have a fractal dimension between 1 and 2, a mountain range will have 

a dimension between 2 and 3.  Fractals also possess the qualit y of being self-similar, that is 

they maintain the same degree of irregularity at all scales.  Fractals are ubiquitous in 
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nature; they are seen in clouds and coastlines, ferns and trees. The human circulatory 

system is a series of self-similar fractals from “aorta to capillary.”1 

The strange attractors of Chaotic systems are often fractal.  This does not mean that 

all fractals are examples of Chaos.  Fractal and Chaos are not synonyms, as they often are 

presented to be in the literature (usually by the same people who use Chaos and random as 

synonyms). 

However, the military might be able to exploit the fractal nature of strange attractors 

in the area of data compression.  Devilishly intricate fractal patterns can be reproduced by 

a limit ed set of instructions. Think of the fern plant, which is essentially the pattern of one 

frond multiplied over and over again.  If one could send the pattern of the frond, and a 

simple set of instructions as to how to reproduce the frond, one could reconstruct the 

entire plant with less instructions than if one had to send the fern plant pattern in its 

entirety.  As discussed above, coastlines and mountain ridges are fractal. We’ve also seen 

that Chaotic systems can be generated by very simple equations. If we could find the 

equation that represented a coastline as seen from a satellit e and transmit only the equation 

and minimal reconstruction equations we might be able to use less time and bandwidth on 

our precious transmission links. 

Notes 

1 McIntosh, Richard.  Quality, Clausewitz and Chaos: New Science Interpretations of 
Self-Similar Systems, Montgomery, Air War College, Air University, 1995, 22. 
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Glossary 

ACSC Air Command and Staff College 

SIC Sensitive to Initial Conditions 

USAF United States Air Force 

attr actors.  The limit cycles or states that a system settles into after its transient dynamics 
die out.1 

bifurcation.  The tendency for a system, when one controlling parameter is changed, to 
drastically change behavior.  For example, a system that displays a single period 
pattern suddenly develops a “beat” pattern.  When the period goes from single to a 
“double-beat”  it is called doubling or period-2; a four beat pattern is called period-4, 
etc. Bifurcation often precedes the onset of Chaos. 

causality.  See determinism. 
determinism. The belief that the future state of any system will be in can be precisely 

known if enough is known about the constituents of a system (the components it can 
be “reduced to”)  and the conditions effecting that system. Before Chaos Theory is 
was believed that deterministic behavior always produced steady behavior2 

fr actals.  A measure of the degree of “roughness,” “ irregularity,” or “fractionation” of an 
object.  A point has a fractal dimension of 0, as it has no “dimension.” A line is said 
to have the fractal dimension of 1, a plane has the fractal dimension 2, and a three 
dimensional surface has the fractal dimension 3.  However a jagged coastline will have 
a fractal dimension between 1 and 2, a mountain range will have a dimension between 
2 and 3.  Fractals also possess the qualit y of being self-similar, that is they maintain 
the same degree of irregularity at all scales. Fractals are ubiquitous in nature; they are 
seen in clouds and coastlines, ferns and trees. The human circulatory system is a 
series of self-similar fractals from “aorta to capillary.”3 

Lyapunov exponents. A measurement of how “fast”  the trajectories represented on a 
phase-space plot diverge from each other.4 

logistics equation.  A nonlinear equation (see nonlinear) used by biologists to describe the 
population fluctuations of animal populations.  The animal population, x, for a future 
time t+1, in  (i.e. xt+1) is equal to last value of the population, xt, multiplied by the 
number of offspring that each adult produces in the absence of overcrowding, �, 
multiplied by a factor that represents the “feedback from effects due to density or 
crowding5”, (1-xt), to give: 

2 xt = �xt(1-xt+1) = �xt - �xt 
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mixing. The complex, interweaving of trajectories (evaluations of states) within phase-
space that characterizes Chaotic systems.  Though, they may approach the bounds of 
the limit states of the attractor, and may pass infinitesimally close to other states of 
the systems, these trajectories never repeat themselves. 

nonlinear. In the most basic sense, non-linear means that the output of a system is not 
directly or inversely proportional to its input.  Linear equations contain only addition, 
subtraction, multiplication or division by constants.  Nonlinear operations involve 
exponents, trigonometric functions and logarithms.  All Chaotic systems are 
nonlinear, but not all nonlinear systems are Chaotic. 

non-periodic.  Non-repetitive, characterized by never settling into a close loop behavior 
in phase-space. 

phase-space plots.  A means of representing the states of a dynamic system by graphing 
its evolution as a function of the minimum number of time-dependent variables of the 
system. 

reductionism. The practice of analyzing the behavior of an entire system as a product of 
the behavior of its components. 

sensitive to initial  conditions. A small change in an initial condition or parameter 
manifests in a radically different end states. 

strange attractors. The complicated, bounded orbits of trajectories of a Chaotic system. 
Strange attractors possess the property of mixing (see mixing), and are often fractal. 
It is by virtue of this long-term boundedness that allow limited predictions to be made 
by some Chaotic systems. 

state. The collection of dynamical variables at a given time that describe a system. 
trajectory.  The time-evolution of the states of a system. 

Notes 

1 James, Glenn. Chaos Theory: The Essentials for Militar y Applications, Newport, 
R.I., Naval War College, 1995, 26. 

2 Gleick, James. Chaos: Making a New Science, New York, Penguin Books, 1988, 
79. 

3 McIntosh, Richard.  Quality, Clausewitz and Chaos: New Science Interpretations of 
Self-Similar Systems, Montgomery, Air War College, Air University, 1995, 22. 

4 James, Glenn. Chaos Theory: The Essentials for Militar y Applications, Newport, 
R.I., Naval War College, 1995, 44. 

5 May, Robert. Exploring Chaos, ed. Nina Hall, New York and London, W.W. 
Norton and Company, 1991, 83. 
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